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Abstract

This report describes research associated with the development of a highly responsive decision-
support technology that can improve the effectiveness of analysts and decision makers within the
Army's Brigade Combat Teams (BCTs). These analysts and decision makers must work with large
data volumes in time-constrained and uncertain operating environments. This joint research and
proof-of-concept effort involved the University of Massachusetts Amherst (UMass), BBTech Corpora-
tion, and the U.S. Army RDECOM CERDEC Intelligence and Information Warfare Directorate, Fort
Monmouth, NJ. This final report focuses on the UMass portion of the effort.

This research was performed in the context of the CIFA '(Collaborative Information-Fusion As-
sistant) decision-support environment, a prototype suite of tools and technologies developed jointly
in this effort. CIFA can augment and support Army personnel in answering Priority Intelligence
Requirements (PIRs) associated with monitoring, assessing, and responding to enemy courses of ac-
tion and other battlespace-environment characteristics. At present, time constraints and information
overload often result in hasty, partial analysis of the information available to intelligence personnel.
CIFA helps Army analysts and decision makers focus their attention on appropriate data by provid-
ing spatially and temporally aggregated views of the environment and by ensuring that important
information has not been overlooked.

Research activities were performed in three main areas: 1) blackboard-based temporal and spatial
aggregation and abstraction; 2) presentation of real-time battlespace assessments and user alerts; and
3) principled integration of sensor data, human-generated reports, and automated processing results.
This report discusses the issues we addressed, the techniques we developed and our evaluations of
them, and lessons learned. The report concludes with a summary of remaining technical challenges
and recommendations for future research and development activities.

The research reported in this document was performed in connection with contract WI5P7T-05-C-P621 under the "Fusion
Based Knowledge for the Future Force" ATO program and the "Advanced REsearch Solutions - Fused Intelligence with
Speed and Trust" program at the U.S. Army RDECOM CERDEC Intelligence and Information Warfare Directorate, Fort
Monmouth, NJ. The views and conclusions contained in this document are those of the author and should not be interpreted
as presenting the official policies or position, either expressed or implied, of the University of Massachusetts Amherst, the
U.S. Army RDECOM CERDEC Intelligence and Information Warfare Directorate, or the U.S. government unless so desig-
nated by other authorized documents. Citation of manufacturers or trade names does not constitute an official endorsement or
approval of the use thereof.
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1 Introduction

The overall objective of this research effort is developing the scientific foundation and experience
necessary to create a highly responsive information-fusion application that improves the effectiveness of
Army analysts and decision makers operating at the brigade (BCT) level. These analysts and decision
makers must work with large data volumes in time-constrained and uncertain operating environments.

This research was performed in the context of the CIFA (Collaborative Information-Fusion Assistant)
decision-support environment (Figure 1), a prototype suite of tools and technologies developed jointly
in this effort by the University of Massachusetts Amherst (UMass), BBTech Corporation,' and the U.S.
Army RDECOM CERDEC Intelligence and Information Warfare Directorate, Fort Monmouth, NJ. CIFA
is designed to augment and support field personnel in answering Priority Intelligence Requirements
(PIRs) associated with monitoring, assessing, and responding to enemy courses of action and other
battlespace-environment characteristics. A major challenge in CIFA is managing the combinatorial
explosion of sensing and processing activities without sacrificing accurate inference. The large volumes
of data, possibilities, and outcomes exceed human perceptual and cognitive abilities and require an
effective human/computer partnership to make the best use of sensing, computation, and communication
resources in highly dynamic and 'uncertain battlefield environments. At present, time constraints and
information overload often result in hasty, partial analysis of the information available to intelligence
personnel. An effective, automated decision-support application for information fusion and situation
assessment can help Army analysts and decision makers focus their attention on appropriate data by
providing spatially and temporally aggregated views of the environment and by ensuring that important
information has not been overlooked.

The UMass portion of this research focused on representation strategies for effective reasoning,
temporal and spatial aggregation techniques, and control of reasoning processes. As will be discussed,
it quickly became apparent that significant collective information is present in the stream of individual
human-generated and automated-sensor intelligence, surveillance, and reconnaissance (ISR) reports
that are available to analysts and decision makers. Harvesting this rich collective information requires
semantically aggregating individual reports in both space and time. Rather than discarding detailed
spatial and temporal information in order to simplify automated reasoning, we investigated how to make
use of all the information that can be obtained from ISR and other sources and how to off load the
semantic aggregation and reasoning that is now performed manually to CIFA.

2 The CIFA Decision-Support Environment

The CIFA decision-support environment consists of a number of loosely connected component sys-
tems, as shown in Figure 1. UMass Amherst developed the CIFA Reasoning Engine (CIFAR) 2 and
the C/JMTK-based "Graphical Situation Presentation" components of the CIFA architecture. These
components are shown in yellow the Figure.

As a decision-support system, information flow in CIFA begins and ends with its users. CIFA's
primary users are the members of the S2-level intelligence staff. This staff use PIRManager to specify
and maintain the active set of Priority Intelligence Requirements (PIR) and Specific Information Require-
ments (SIR). These PIR/SIR inform the CIFAR engine of the kinds of events and enemy behaviors that
are of interest to the S2 staff. Additionally, any required knowledge about the environment, weather,
terrain, culture, sensor platforms and intelligence report characteristics, equipment and personnel capabil-
ities, and the composition and structure of friendly and enemy forces is provided to CIFAR through the
Knowledge Server. Most of this type of knowledge will be developed and loaded into the Knowledge

'BBTech Corporation was supported under separate contracts.
2 Pronounced "see-far."
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Figure 1: CIFA Architecture

Server in advance of combat operations. If additional "in the field"-specific information is required, the
S2 staff can specify it using the KnowledgeManager component.

CIFAR takes as its input:

* knowledge of the environment, reporting, equipment, and force structures from the Knowledge
Server

" the PIR and SIR obtained from PIRManager

" the stream of intelligence reports

The CEFAR engine provides decision-support assistance to the S2 staff through two user-interface
(UT) components. The first UI component is the CIFA Graphical User Interface (CIFA/Ul), which
presents an interactive map-based presentation of the hypothesized location, identification, and movement
of entities and aggregated groups of entities that have been reported in the environment (Figure 2). The
second UT component is the PIR/SIR status monitor (see Figure 22, page 28), which is integrated with
PRManager. The PIR/SIR monitor UtI displays current status of all PIR/SIR and notifies the S2 staff of
changes in hypothesized entity behaviors in the environment that are relevant to determining the status
of a PIR. These two CIFA UT components allow the S2 to quickly understand the situation and focus
his or her attention to entity behaviors and their supporting intelligence reports, saving time and making
the most effective use of cognitive resources. The presentation views provided by these UT components
are individually parametrized and custonizable, allowing each user to personalize the tools for the most
comfortable and effective results.
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Figure 2: The CIFA Graphical User Interface

3 CIFAR: The CIFA Reasoning Engine

The blackboard-based CIFAR engine performs the inferencing required to identify, aggregate, and
track entity activities using the high-Volume stream of automated-sensor and human observation re-
ports. CIFAR is implemented using the open-source GBBopn framework.3 GBBopen is a modem,
high-performance, open source blackboard-system development environment that is based on concepts
that were explored and refined in the UMass Generic Blackboard system [1] and the commercial GBB
product [2]. A major capability provided by GBBopen is multidimensional abstraction over blackboard
objects ("unit instances"), blackboard levels/containers ("space instances"), and proximity-based retrieval
patterns. Multidimensional abstraction provides a semantically meaningful separation of blackboard-
repository storage mechanisms from knowledge source (KS) and control code. This separation allows
storage and search strategies and optimizations to change dynamically in order to maintain top perfor-
mance. GBBopen also provides "link based" inter-object relationships and highly efficient and extensible
event signaling/handling that form the foundation for fast, yet flexible, opportunistic processing activities
and control reasoning.

GBBopen is written in the Common Lisp language, an ANSI standard.4 The Common Lisp language
is supported by commercial vendors and open-source implementations on a wide range of hardware plat-
forms and operating systems. At the implementation level, GBBopen is designed as a smooth extension
of Common Lisp, CLOS (the Common Lisp Object System) [3], and the Meta-object Protocol [4], pro-
viding all the advantages of a rich, dynamic, reflective, and extensible language to blackboard-application
architects and component writers. These capabilities are crucial in building complex blackboard-based

3 http://GBBopen.org
4Common Lisp was the first ANSI standard to incorporate object-oriented programming: ANSI X3.226- 1994.
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applications where representations, KSs, and control mechanisms will change during the development and
over the operational lifetime of the application.

GBBopen incorporates over 20 years of experience in developing and delivering a wide range of
blackboard-system-based applications. In addition to CIFAR, GBBopen is used in many complex and
challenging applications including:

" CNAS (AFRL)-power-aware cognitive sensor agents for ground-level environmental monitoring

" INCOMMANDS (DRDC/DND Canada)-anti-missile threat assessment and weapon assignment
for Halifax class Canadian Navy frigates

" COORDINATORS (DARPA/CMU team)-agent-based coordination support for humans

" Integrated Learning (DARPA/Lockheed Martin team)-automated learning using integrated learn-
ers, reasoners, simulators, planners

3.1 CIFAR Inputs

As highlighted in the CIFA overview, input to CIFAR consists of a stream of individual human and
automated sensor reports, the current set of PIR/SIR, and knowledge of sensor and target types and
capabilities, activity and behavioral (doctrinal) and strategic knowledge, terrain and weather features, and
so on. A key design goal for CIFAR was to encode procedurally as little problem-domain knowledge as
possible. Instead, CIFAR obtains this knowledge at start up from the Knowledge Server, and knowledge
updates can be loaded dynamically into the operating CIFAR engine at any time.

Intelligence reports Issues of information extraction and data formatting were outside the scope of
CIFAR processing. Instead, the intelligence reports input stream consists of well-structured report records
containing the information that would realistically be expected to become available in the near term from
human and automated intelligence, surveillance, and reconnaissance (ISR) reporting. Major Chet Brown
(USAI C&FH) developed the report structure and format, which is detailed in Table 1.

The data sets used in this effort were generated by RDECOM using a suite of tools including JCATS,
the Joint Conflict and Tactical Simulation system,5 and by BBTech Corporation using their MARS
(Maneuver And Report-generation Simulator) entity-based modeling and simulation system. The data
sets represent realistic report feeds, but they are unclassified and the simulations used to generate them
use open source sensor models. Table 2 lists the principal data sets that were used, and we will refer to
specific data sets using their abbreviated name (e.g., ds05) throughout this report.

In addition to the report data sets, latter JCATS and MARS data sets included a separate input file
that contained the ground-truth force structure hierarchy for ground-truth objects (GTOs). As with the
GTO labeling of individual reports, this information was used only for evaluation of CIFAR's spatial
clustering and was ignored by CIFAR's reasoning activities.

Generating realistic data sets was a difficult task in its own right, and the early JCATS-generated
data sets had a number of problems that included incorrect or unavailable target speed and direction
values, reporting from sensors that should not be able to see the target, etc. Realistic movement of
individual entities was also an issue. If all the tanks move down the road at precisely 40km/hr, it is
very easy to determine which future reports are associated with which tank. Adding realistic individual
entity variations to JCATS simulations involved labor-intensive "manual animation" to achieve individual
behaviors that went beyond random variation from fixed velocity movement. BBTech Corporation's
MARS entity-based simulation system was motivated by the need to generate quickly (by automated,
entity-based animation) data sets where an individual BSO might need to navigate around terrain or be

5http://www.jfcom.mil/about/fact_jcats.htm
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Each individual report item in the report stream is formatted as follows:
1. Time Available - Military Date/Time Group

(DDMonYY, Hour, Minute, Second, Time Zone: 30Dec04, 12, 00, 59, Z)
2. Time Sensed - Military Date/Time Group

(DDMonYY, Hour, Minute, Second, Time Zone: 30Dec04, 12, 00, 59, Z)
3. Target Type - Enemy Battle Space Object (BSO) or aggregate type according to unit identification or

enemy equipment list codes: 2S3 or TRACKED

4. Target Quantity - Quantity of BSO or aggregate: 16 (typically 1)
5. Target Affiliationa - Reported affiliation of BSO or aggregate: ENEMY or UNKNOWN
6. Target Activity - Description of target activity using Enemy Activity Codes: MASSG
7. Target Direction of Movement - Cardinal, ordinal, or azimuth (vector) along which the target is moving

(field is blank if target is stationary or source cannot provide direction information): NW or 270
8. Target Speed - Target velocity in kilometers per hour: 25
9. Named Area of Interest (NAI) - NAI in which target appears if applicable (field is blank if the target is

not within an NAI or the source does not provide it: 34
10. Target Latitude - Location of target along the parallel of latitude (North or South, Degrees, Minutes):

N, 40,42.033

11. Target Longitude - Location of target along the meridian of longitude (East or West, Degrees, Minutes):
E, 47, 06.946

12. Target Altitude - Height of target Above Ground Level (AGL) in feet: 6
13. Target Military Grid Reference System (MGRS) Location - Location of target within the MGRS rect-

angular grid (Grid Zone Designation, 100,000 meter square identifier, 6 to 10-digit grid coordinate-I100 to
1 meter accuracy respectively): 12RWV7040083640

14. ISR Source Platform - Identification of the specific Sensor Platform/Source that collected and reported
the information (also known as the bumper/airframe/hull/unit number or name): 2UAUAV

15. ISR Source Type(s) - Identification of the types of sensors used by the ISR Source Platform to collect
and report the information. If more than one type of sensor is used, the combination of sensors will be
reported within parentheses separated by a space. Single source report: SIGINT; multiple source: (MTI
SAR)

16. Source Latitude - Location of source along the parallel of latitude (North or South, Degrees, Minutes):
N, 40,42.033

17. Source Longitude - Location of source along the meridian of longitude (East or West, Degrees, Minutes):
E, 47, 06.946

18. Source Altitude - Height of source Above Ground Level (AGL) in feet: 1053
19. Source Military Grid Reference System (MGRS) Location - Location of source within the MGRS

rectangular grid (Grid Zone Designation, 100,000 meter square identifier, 6 to 10-digit grid coordinate-100
to 1 meter accuracy respectively): 12RWV7040083640

20. Source Direction of Movement" - Cardinal, ordinal, or azimuth (vector) along which the source is mov-
ing (field is blank if source is stationary): NW or 270

21. Source Speed' - Source velocity in kilometers per hour: 25
22. Confidence of Information - The degree of confidence in the report, expressed as a number in the range

0-100: 80
23. Ground-Truth Target IlD - A unique identifier for the ground-truth object (GTO) or aggregate that gave

rise to the report: 2-2-8807. This attribute is available only with simulated data sets and is used only for
evaluation-it is ignored in CIFAR processing activities.

24. Ground-Truth Thrget Typed - The fully detailed ground-truth BSO or aggregate type according to unit
identification or enemy equipment list codes: 2S3. This attribute is available only with MARS-generated
scenarios and is used only for evaluation-it is ignored in CIFAR processing activities.

'Provided only in JCATS Version 3 data sets.
bNot provided in JCATS Version 1 data sets.

'Not provided in JCATS Version 1 data sets.
dProvided only in MARS data sets.

Table 1: Data Set Report Syntax
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JCATS Data Sets
Data Set Region Run Date Reports
ds05 Yevlakh 5 June, 2006 13,273
ds05a Yevlakh 5 June, 2006 37,258
dsl7 Yevlakh 17 August, 2006 22,122
ds10 Yevlakh 10 October, 20060 54,239

MARS Data Sets
Data Set Region Run Date Reports
dsml 9 Yevlakh 19 October, 2006 79,380
dsml3 Baghdad 13 March, 2007 41

Early Data Sets
Data Set Region Run Date Reports
ds18 Yevlakh 18 January, 200 5b 55,303
ds08 Yevlakh 8 March, 2005C 8,895
ds22 Yevlakh 22 April, 200 5d 8,895
dsll Yevlakh I July, 2005 102,850
dsOl Yevlakh 1 September, 2005 35,185
ds09 Yevlakh 9 November, 2005 61,528
ds 30 Yevlakh 30 November, 2005 80,069

'Group ground-truth labeling was not provided for this data set.

bA preliminary JCATS-generated data set produced by Christian Pizzo. Not all report fields were present and some others

contained incorrect values.
'A manually annotated data set generated by Chet Brown.

dA corrected version of the dsO8 data set.

Table 2: Report Data Sets

slowed by ground characteristics. Other entities might react to this by adjusting their own speed and
spacing in order to maintain operational guidelines.

There are actually four slightly different report-stream formats in the data sets provided to CIFAR:
three for JCATS-generated scenarios and one for MARS-generated scenarios. They differ in the number
and content of attributes present in each report item, and CIFAR automatically recognizes which report
format is being supplied and processes it accordingly. In addition, the detailed format of some individual
items varies from the specification (for example, dates formatted as 5-Jun-06, versus 05Jun06), and
CIFAR also adapts to those variants.

Domain knowledge CIFAR obtains problem-domain knowledge from the Knowledge Server in XML
format, either live over a socket connection or from XML files if CIFAR is being developed or
demonstrated without the Knowledge Server operating.

Note that an individual intelligence report may not specify the target type in terms of a specific,
detailed classification. For example, many unattended ground sensors (UGS) might only be able to report

the type as either being WHEELED or TRACKED. A novice field observer might report spotting a TANK
rather than a T-72B or a IMR-2M. 6 CIFAR needs to understand the relationship and compatibility
of intelligence reports with different levels of type-identification specificity, and this is one form of
problem-domain knowledge that is obtained from the Knowledge Server. Figure 3 shows the entity-type
specificity graph that was used in conjunction with the Yevlakh-region data sets.

6An engineering laying vehicle built on a modified T-72 chassis.
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PIR/SIR CIFAR also obtains PIR/SIR from the Knowledge Server in XML format. Again this
information can either be obtained live over a socket connection with the Knowledge Server or from
XML files if CIFAR is being developed or demonstrated without the Knowledge Server operating.

3.2 CIFAR Processing

At a simple level of detail, CIFAR processing involves aggregating individual reports into hypothesized
BSOs and then aggregating those BSOs into BSGs (groups of BSOs that are operating together).
This multi-level semantic aggregation is is illustrated on the left side of Figure 4. In addition to,
and concurrent with, this semantic (and primarily spatial) aggregation is following the movement of
these BSO and BSG entities over time. Such temporal aggregation (or "semantic tracking") is a major
contributor to assessing the behavior and possible intent of the enemy.

For evaluation purposes, GTO-labeled reports can also be aggregated into GTOs, which can be
compared with the BSOs created by CIFAR (shown on the right side of the figure). Note that GTOs do
not represent the complete knowledge of ground-truth battlespace objects and their simulated movements,
as that information is not fully reconstructable from GTO-labeled reports. Using complete ground-truth
information would not be a fair evaluation strategy anyway, as we would not expect CIFAR to intuit
BSOs that were never observed in any intelligence report. GTOs represent the best that CIFAR could
possibly do given the reports it receives.

Finally, GTOs can be aggregated into GTGs (ground-truth groups) using the provided ground-truth
force structure hierarchy for GTOs. GTGs can only be loosely compared with the BSGs, however, as
the doctrinal, hierarchical force-structure decomposition knowledge is not directly related to the spatial
deployment of BSOs on the battlefield.

A number of factors make CIFAR's processing difficult. As mentioned above, observed entities
are reported at varying levels of classification detail. Thus, CIFAR must consider all the possible
classification candidates that are compatible with a report (for example, the many possibilities for
WHEELED or TRACKED labeled UGS-generated reports) as well as considering the potential that a report
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Figure 5: Are They the Same BSO?
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has misclassified the target.
BSOs are not continuously observed. Minutes may pass between the last report of a BSO and the

next. The longer a BSO is unobserved, the more difficult it is to assert that two reports are of the same
BSO (Figure 5). A classic real-world example of this situation is the "tunnel" scenario: "A red car is
seen entering one end of a tunnel, and a minute later a red car is seen exiting the other end of a tunnel.
Is it the same car?" How long should we watch both ends of the tunnel for other red cars before we are
confident that the two are indeed the same red car? (And, are there other entrances that we don't know
about? Do people live (and park) in the tunnel? ... )

Not only are there significant time gaps between BSO observations, but the observations are also
skewed in time. Figure 6 shows a convoy of three BSOs (C, B, and A) moving from left to right.
Sensor I observes B and sometime later observes C. Later still Sensor 2 observes A. The observed BSO
ordering and their spacing cannot be obtained directly from the three reports without compensating for
the sensed-time differences among them.

It can also be very difficult to determine how many BSOs have actually been observed by a set
of reports. Consider the two examples shown Figure 7. Figure 7(a) shows reports generated by two
sensors that observed the same target. Figure 7(b) shows the same two reports generated by sensors that
each observed a different target. Given sufficient positional uncertainty in the reports, it is impossible
to distinguish these two situations without additional constraining knowledge or additional observations.
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Figure 7: How Many?

Obviously we do not want CIFA alerting the S2 staff that there are 20 tanks moving down the road when

there are actually only two. Getting the counts right is a crucial aspect of CIFAR processing.

4 Blackboard-based Temporal and Spatial Aggregation

Aggregating individual reports in both space and time can greatly increase confidence in the count,
identity, and behavior of observed entities. Specifically we want CIFAR to assist the S2-team in the
identification, composition, and tracking of enemy force-structure components as they move about the
battlefield. Temporal aggregation involves associating the positions and movement of individual BSOs

and spatially proximate groups of BSOs over a number of observations received over time. Spatial
aggregation involves identifying groups of BSOs that are operating together. Temporal and spatial

aggregation can greatly clarify behavioral activities that appear uncorrelated and without purpose from
the perspective of individual observations at any point in time.

Template-based aggregation In conventional, force-on-force combat settings, enemy BSOs tend to be

deployed and operate in fairly structured doctrinal patterns. We felt that applying knowledge of these
force-structure behavioral patterns to the intelligence report observations would allow CIFAR to assess
the state of the battlefield more quickly and with higher confidence.

Consider the following simple example of using this kind of spatial-deployment knowledge. Figure 8
shows the spatial template (SA01) for a pattern of objects that, when observed together, form an
aggregate group of objects (an SAO group). The template represents how individual SAO objects are
expected to be related spatially to one another. All SAO instances are expected to consist of the objects
shown in the figure as solid circles (objects of type A, B, and two C's). SAO instances may also contain
some or all of the optional objects shown as dotted circles (two D's, another B, and an E). All the
component objects that do exist are expected to be in approximately the spatial configuration shown
relative to the orientation of the template. The layout of Figure 8 represents the pattern objects as if they
were viewed from above, with the pattern oriented left (front) to right (rear). Not depicted in the figure

is functional knowledge representing the confidence that an SAO has been detected. This confidence
is based on how many of the expected objects have been observed, the optional objects that are also
present, and the spatial variance of the objects from the template.
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Figure 9: The Leading Portion of 11Ith Mechanized Brigade as Specified in FormationBuilder (Courtesy
BBTech Corporation)

Of course, this simple example is only suggestive of the force-structure template representation and
matching process. Actual force-structure templates (Figure 9) include parameters that control the allowed
extent variance of subgroups within the template, the distance variance between subgroups, and the
angular variance among the subgroups. This recursive "blob-and-spring" (B&S) representation provides a
highly expressive representation for spatial relationships and constraints on their adaptation. The straight-
line B&S template can be aligned, bent, compressed, or extended based on environmental conditions, and
this modified template instance used as the baseline for CIFAR confidence matching.
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Uniformed aggregation In contrast to the template approach, uniformed aggregation involves iden-
tifying spatial and temporal patterns in the report stream without the use of force-structure pattern
knowledge. Instead, uninformed aggregation applies object tracking and clustering methods to identify
collective BSO behavior. We believed that uninformed aggregation would be used as the initial step
in the process of applying force-structure templates to high-confidence clusters formed by uninformed
aggregation methods. Given our belief in this uninformed-to-template-based aggregation strategy, coupled
with an initial lack of force-structure template knowledge consistent with the scenario data sets that were
available to us, we began focusing the bulk of our aggregation efforts on uninformed aggregation.

4.1 Initial Aggregation Strategies

We started our uninformed aggregation work by evaluating the effectiveness of various standard mul-
tidimensional clustering techniques for uninformed aggregation in CIFAR. Clustering is the process of
grouping data into partitions ("clusters") on the basis of similarity in their features. Clustering techniques
are used in many fields and have been well studied. Unlike the majority of clustering applications,
however, we do not have a large static data set to understand. Instead, we want to be able to identify
appropriate spatial-temporal clusters using a relatively small amount of intelligence reports (such as those
received over a 5 or 10 minute period), and then use new, incoming reports to track those clusters,
identify when completely new clusters have been observed, and decide when old clusters should be split
up, merged, or deleted.

One commonly used clustering technique is hierarchical clustering. Hierarchical clustering methods
proceed either by iteratively merging small clusters into larger ones (agglomerative methods, by far
the most common) or by splitting large clusters (divisive methods). The result of this process is a
hierarchy of clusters, where the hierarchy shows how the clusters are related to each other. A specific
partitioning of the objects can then be obtained by cutting the hierarchy at the desired level and taking
the newly created leaf clusters as the data partitions. Agglomerative methods use criteria for merging
small clusters into larger ones, and often these criteria concern the pairwise merging of clusters (thus
producing binary trees). Divisive methods use criteria for subdividing a cluster, and again, a binary
subdividing criteria results in a binary tree. A key issue for totally automated application of hierarchical
clustering is deciding where to cut the hierarchy so that the resulting partitions are useful. A secondary
issue for CIFAR use is determining splitting (or joining) criteria that lead to hierarchies that reflect
spatial-temporal report aggregations. Given these issues, we believed that it would be very difficult to
obtain reasonable fully-automated report clusters using hierarchical methods.

K-means and related derivative partitioning methods 7 are relatively simple and therefore quite fast
when applied to large data sets. The k-means algorithm proceeds as follows:

" choose the number of clusters, k

* randomly select k random points as cluster centers

" assign each object to the nearest cluster center

• recompute the new cluster centers

" repeat the two previous steps until some convergence criterion is met (usually that the assignment
hasn't changed)

A well-known disadvantage of k-means is that the resulting clusters depend on the initial random
assignments. It minimizes intra-cluster variance, but does not ensure that the result has a global
minimum of variance. The main disadvantage of using k-means for CIFAR is that the number of
clusters, k, must be specified. Although k-means can be used in an iterative procedure that varies k and

7 CAST (Cluster Affinity Search Technique) is the graph-theoretic cousin of k-means. It also has the requirement that the
number of clusters (cliques) is known in advance.
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then uses validity measures to determine the "quality" of the resulting clusters (such as the intra-cluster
variance), an approximate estimate of k is still required.

Self-organising maps (SOMs) use a simple type of neural network that can organise high-dimensional
data into a low-dimensional (usually 2d) "map" of clusters. Each neuron in the network corresponds to
a cluster, and the neural network is utilized to adjust the meta-structure to better represent the clusters.
SOMs have the advantage of rapidly constructing clusters that conform to a meta-structure. However, the
main drawback of using SOMs for clustering is that this meta-structure, including the number of clusters
must be known prior to clustering. Again, this requirement is not well suited to use in CIFAR.

DBSCAN A more promising clustering algorithm for CIFAR was DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [5]. DBSCAN was designed to discover clusters of arbitrary
shape and number. Instead of requiring the number of desired clusters, DBSCAN is controlled by two
parameters: Eps, the maximum radius of a neighborhood, and MinPts, the minimum number of points
required in an Eps-neighborhood. DBSCAN works as follows:

" arbitrarily select an object p

" determine all objects that are density reachable from p given Eps and MinPts

" if p is a core object, a cluster is formed

* if p is a border object, no objects are density-reachable from p, so select the another object from
the database as p

" continue until all objects have been processed

An object is a core object if there exists at least MinPts other objects within a radius of Eps
from it. An object is a border object if it is on the border of a cluster. An object p is directly density
reachable from another object q if it is within a distance Eps of q and there are at least MinPts other
objects within a distance Eps of q. An object is density reachable from another object if there is a
transitive chain of objects that are pairwise directly density reachable with one another.

We began using DBSCAN on the dsl8, ds08, and ds22 data sets, using only target location (x
and y) and sensed time (t) report attributes. We decided to ignore target altitude as it would only be
meaningful if certain BSOs were on a ridge and other BSOs were at the base of the ridge. Clustering in
only x, y, and t also made sense, as velocity and direction values were not reliable in the preliminary
data sets that were provided to us.

Small, spatially well-separated clusters were relatively easy to identify using DBSCAN, but after
extensive trials we were unable to find Eps and MinPts settings that worked well on multiple data sets
or even on different time periods of the same data set. A known problem with the DBSCAN algorithm
is that the use of fixed global values for Eps and MinPts can result in the formation of one giant
cluster. Reducing these values can easily transition this one-cluster situation into a situation with far
too many clusters. Recursive DBSCAN (RDBC) variants, in which Eps and MinPts can be reduced
during processing have been developed, and we experimented with an RDBC strategy as well. However,
we remained unable to determine an automated strategy that resulted in consistently useful clusters.
As a sanity check in case we were having difficulty due to multiple reports of the same BSOs being
received from different sensors, we even tried applying DBSCAN on a per-sensor-platform basis. This
sensor-platform-based partitioning showed slight improvement in parameter stability, but introduced a
secondary requirement of merging the resulting clusters.

Synthetic snapshots We began to suspect that the irregularity of BSO sightings and temporal skew
were making three-dimensional clustering difficult. We could not simply drop the time dimension and
cluster in x,y space as there were few reports sensed at any single point in time. In order to move to
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Figure 11: Failed Prediction

two-dimensional clustering we would have to generate a "synthetic snapshot" of the reports at an instance
of time by estimating the position of reports that were sensed within a delta-window of the desired time.
Fortunately data sets with reasonable target speed and direction attributes had now become available to
us, so it was possible to perform constant-velocity extrapolation to time-align reports (Figure 10). The
constant-velocity extrapolated position is shown as the dotted, light-blue circle in the figure. The red
circle indicates the actual (unknown) position of the BSO at time n + a. (The darker blue circle at time
n + a will be discussed later.)

These extrapolated reports were represented on the blackboard as extrapolated-report objects. Since
the attributes of individual intelligence reports are not fully accurate, variations are expected in the target
location, speed, and direction values of a report. Even if the errors in target location, speed, and direction
are relatively small, their effect on the extrapolated-report's location becomes increasingly magnified as
the amount of temporal extrapolation grows. Further estimated location errors arise if the BSO changes
speed or direction during extrapolation interval (Figure 11).

This extrapolation error makes the choice of a synthetic-snapshot frequency all the more important.
A long interval between snapshots would create large errors in extrapolated position. Short intervals
would both increase processing time due to the larger number of snapshots and reduce the likelihood
that a BSO would be sensed at all during a particular snapshot. We experimented with various snapshot
frequencies, and 300 seconds (or 5 minutes) seemed to provide a nice balance between cost, BSO
presence, and accuracy.

Use of synthetic snapshots allowed us to explore two-dimensional DBSCAN clustering with signif-
icantly improved results. However, even with improved cluster identification, the problem remained of
how we would track (unify) clusters from one snapshot to the next. We also needed to address the issue
of determining the count and target-type identity of individual BSOs from the extrapolated-reports associ-
ated with each cluster (the problem illustrated in Figure 7, page 10). A BSO that was reported by three
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different sensors at some point during the snapshot interval would result in three extrapolated-reports that
are (hopefully) close to one another in the snapshot. We certainly do not want CIFAR to count them as
separate BSOs!

4.2 Sequential-Interval (SI) Algorithm

We realized that an important reason that the synthetic snapshot approach improved clustering so
dramatically was that we were now implicitly using additional report information in creating the
extrapolated snapshots. The speed and direction of a reported target, in addition to its position, help
to relate it to other reports. We had been throwing this important information away in our attempts at
three-dimensional (x, y, t) clustering. Given this new awareness, we believed that we could make even
better use of predictive extrapolation to help merge multiple reports into single BSO-sighting objects
based upon their expected location in the synthesized snapshot.

Conceptually this approach proceeds as follows:

" When a new report is received, extrapolate its position at the next snapshot time using its target
location, speed, and direction attributes.

" Look to see if a "compatible" BSO-sighting is present within an extrapolation-distance-delta dis-
tance of the extrapolated report position.

* If a compatible BSO-sighting exists, add the report to the list of supporting reports for that BSO-
sighting; otherwise create a new BSO-sighting object at the extrapolated position and add the re-
port as its initial supporting report.

The delta-extrapolation-distance value compensates for the likely extrapolated BSO-position error of
reports stemming from the same BSO. For snapshot frequencies of 5 minutes, a value of 500 meters
worked well.

A "compatible" BSO-sighting is one whose target type is equal to that of the report or to a less-
specific parent in the entity-type specificity hierarchy (Figure 3, page 7). If the new report is more
specific than the target type of the BSO-sighting, the BSO-sighting type is set to the more specific value.

The 500 meter delta-extrapolation-distance value allows reports of nearby compatible BSOs to be
merged into a single BSO-sighting. To distinguish between the cases illustrated in Figure 7 (page 10),
additional constraint knowledge is needed. One such constraint comes from the characteristics of the
reporting sensor platform. Sensors do not report seeing the same BSO continuously. Each particular
sensor type has a distribution of how frequently it issues reports for the same object observed within its
sensing region. CIFAR can make use of this in making its decision of whether a report should be added
to an existing BSO-sighting. If the BSO-sighting contains another report from the same sensor platform
that was sensed closer in time than the typical re-sensing frequency of that sensor, then there is strong
evidence that the new report is either an error or a second (compatible) target that is close by. In this
case, CIFAR will consider the report as incompatible with the existing BSO-sighting and create a new
BSO-sighting for the report.8

We did not have sensor characteristics for the simulated sensor-platforms used in creating the report
data sets. However, we did have GTO report labeling and this allowed us to determine the characteristics
of the simulated sensors used in generating these data sets. It turned out that all of the sensors used in
the JCATS simulations had the same re-sensing characteristics. The same was true for MARS, but its
sensors had a more frequent re-sensing distribution. Figure 12 shows the two re-sensing distributions.
For the JCATS sensors, 13 seconds or greater was observed to be the re-sensing frequency 90% of the
time (circled in the figure). For MARS sensors, 5 seconds was the comparable value. So, we used 13
seconds and 5 seconds, respectively, as the minimum re-sensing constraint value.

8The reports associated with the existing BSO-sighting can then be redistributed among the two BSO-sightings.
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Figure 12: Re-Sensing Frequency

Once the world clock reached the end of the snapshot period, and all BSO-sightings had been
generated for the snapshot, the position, speed, and direction values for each BSO-sighting is determined
by performing a weighted average of the values in the supporting reports.9 Then BSG-sightings were
generated by clustering the BSO-sightings in the snapshot and their position, speed. Finally, speed and
direction values for the BSG-sightings are determined from the supporting BSO-sightings similarly to
how they are determined for BSO-sightings from individual reports that support them.

The next step is to update CIFAR's BSO and BSG assessments using the snapshot's BSO-sightings
and BSG-sightings. This is accomplished using a similar extrapolation-based tracking algorithm to
extrapolate the BSOs and BSGs positions from the last snapshot to their expected positions in the new
snapshot. Once again, we face the issue of errors being magnified when extrapolating over a significant
time interval. Our experiments, however, indicate that errors in individual reports tend to cancel one
another out when determining their values, which reduces the extrapolation error this time around.

BSO and BSG generation Since the tracking algorithm for both BSOs and BSGs are exactly the same,
only the BSO generation algorithm will be described. At the initial snapshot, a BSO is generated for
each BSO-sighting. The location, speed, and direction of the BSO is that of the BSO-sighting. Once the
BSO-sightings and BSG-sightings in a new snapshot have been processed, each BSO from the previous
snapshot is extrapolated to its expected location the current snapshot. A search is then conducted over
all the compatible BSO-sightings in the new snapshot to locate the candidate BSO-sightings that are in
the vicinity of each extrapolated BSO. A minimum distance global search is performed to obtain the best
BSO-sighting to BSO pairings. Then, BSO-sightings which have not been paired with a BSO have new
BSO objects created for them. BSOs that could not be matched with a BSO-sighting are not updated for
the new snapshot. The location, speed, and direction of all other BSO sightings are then updated using
values from the BSO-sighting, and the target type of the BSO is made more specific if the BSO-sighting
specifies a more specific identification.

This same procedure is used for BSGs, where compatibility is related to the similarity of BSO
composition between the BSG-sighting and the BSG. We also observed that CIFAR created BSG-
sightings that were very close to each other but which were not being merged into a single BSG-sighting
due to the termination condition of our clustering algorithm. These BSG-sightings were so close to
one another that BSGs were often being merged and re-split in successive snapshots. In order to better

9The weighted average includes the values of all members, with the most recent (least extrapolated) member receiving the
highest weight.
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identify and track BSGs and minimize this effect, we added a secondary BSG-sighting merge procedure
that is run after the BSGs are extrapolated to the new snapshot and paired with BSG-sightings but before
new BSGs are generated. The secondary merging was done in two steps:

1. We merged unpaired BSG-sightings which are within 5000 meters of their closest compatible BSG.
The reasoning behind this is, if there is a compatible BSG within its vicinity, this BSG-sighting
was not attached because another BSG-sighting had been paired with the BSG. Since the unpaired
BSG-sighting is also sufficiently close to the BSG, the two BSG-sightings should be viewed as one
and merged into this BSG.

2. We then combine any remaining compatible BSG-sightings which are not within 5000 meters of
an extrapolated BSG, but are close to other unattached BSG-sightings. This allows us to generate
larger and fewer new BSGs for the new snapshot.

4.3 Reverse Sequential-Interval (RSI) Algorithm

Although our SI algorithm was doing a good job of uninformed aggregation and tracking, we observed
that the initial positions of newly extrapolated BSO-sightings were being determined by the earliest
reports in the snapshot interval-the reports that were extrapolated the furthest ahead in time. Although
using the initial reports received in the snapshot period allowed the creation of a snapshot's BSO-
sightings earlier, we would gain seeding accuracy if we did not create BSO-sightings until the end of
the snapshot and then worked backward from the most recent reports to the earlier ones in the snapshot
interval. We found that this approach did moderately increase the accuracy of our BSO-sighting creation
over the SI approach.

Since the remainder of our SI algorithm was unaffected by this change to report ordering for
BSO-sightings, RSI proceeds identically to SI once the BSO-sightings have been developed for the
snapshot.

4.4 Interval-Based BSO-Sighting-Extrapolation (IBSE) Algorithm

The IBSE algorithm is the dual of the RSI algorithm. Instead of operating on each report (in inverse
time order) to form the new snapshot's BSO-sightings, we extrapolate the prior snapshot's BSO-
sightings to the time of each report as it is received and then use that extrapolation as the basis for
associating reports with BSO-sightings. The idea is to take advantage of the potentially more accurate
position, speed, and direction values associated with the collectively generated BSO-sighting when
doing the extrapolation, as well as shortening the extent of each extrapolation. Consider once again the
extrapolation setting shown in Figure 10 (page 14). The extrapolated BSO-sighting location is shown
as the dotted, light blue circle. The newly received report is shown as the solid red circle. We could
simply update the BSO-sighting that has been matched to the report to the report's location. Or, we
could assume that there is some reasonableness in the predicted location versus the potential for an
errorful report and weight the two positions, as shown by the solid, dark-blue BSO-sighting circle. This
parametrized "predictive inertia" can be beneficial in smoothing out noisy reports at the cost of slower
response to slight, but actual BSO movements.

Reports that cannot be matched with an extrapolated BSO-sighting are retained until all reports
in the snapshot period have been received and processed.' 0 Then, our RSI algorithm is applied to
generate BSO-sightings for those reports. IBSE reduces the effect of speed and direction inaccuracies in
individual reports, since those reports whose locations are consistent with the extrapolated BSO-sightings
can be matched without relying on their reported velocities.

00r at least until the majority of reports have been received. If some reports have long delays from their sensed time to
the time they are received by CIFAR. Significantly delayed reports can still be used to slightly update completed processing,
but if a large percentage of reports are being received with delay, adding a lag time to CIFAR reasoning may be a better
approach than generating premature (and potentially incorrect) BSO and BSG assessments.
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Figure 13: BSG Aggregates Help Tracking

Once again, the changes in our IBSE algorithm dealt with the generation and tracking of BSO-
sightings, so most of the remainder of the algorithm is the same as RSI and SI. IBSE does eliminate
the need to perform most of the BSO-tracking process, since the majority of BSO-sightings in the new
snapshot have been iteratively extrapolated by incoming reports from the past snapshot's BSO-sightings.
As a result, IBSE provides an added benefit of lower computational cost than RSI and SI.

4.5 Non-Interval-Based BSO-Extrapolation (NIBSE) Algorithm

The NIBSE algorithm is a natural extension of IBSE. Instead of creating and then iteratively extrapo-
lating new BSO-sightings forward in each snapshot period as incoming reports are processed, we could
directly update hypothesized location, speed, and direction of BSO objects based on the reports. This
would allow us to avoid creating the intermediate BSO-sightings, except for the fact that we are using
them for the BSG-sighting creation and tracking portion of the RSI algorithm. (We will deal with this
issue in a moment.) Another advantage of operating directly on BSOs is that we can also eliminate the
use of snapshot intervals. We simply update the appropriate BSO whenever a new report is associated
with it. If a new report comes in which does not fit with any existing BSO, we can draw one of
two conclusions: either a brand new BSO was observed by the sensors or the BSO has moved in an
unpredicted fashion as indicated in Figure 11 (either because the BSO did move that way in the world or
because the report was in error). In this situation, we create a new BSO based on the maverick report,
allowing confirmation by future reports to decide if a new BSO exists in the world or if the new BSO
was simply the result of a bad report. The NIBSE BSO-extrapolation algorithm does not attempt to relate
new BSOs that result from an unexpected turn by the BSO. I I This issue is better handled at the BSG
level, as all the BSOs in a BSG are likely to change direction in concert (Figure 13). In particular, this
figure illustrates that accurate BSG-level assessment and tracking can be performed without necessarily
getting the BSO-level tracking correct. There may not be sufficient constraining information available to
distinguish the BSO movements shown with the dotted red lines from the alternative ones shown with the
dotted blue lines. Nevertheless, the BSG tracking shown by the solid blue arrows remains accurate.

Without BSO-sightings, however, we can no longer use the IBSE BSG-sighting creation, clustering,
and BSG tracking techniques. So, NIBSE parallels the direct BSO-extrapolation process with BSGs
(eliminating the creation of BSG-sighting objects). Newly created or updated BSOs take the role of new
reports in the BSG-extrapolation process. The BSG associated with existing BSOs is updated when the
position of one of its BSOs change. If the movement of one or more BSOs becomes inconsistent with
the others in the BSG, the BSG is subdivided. If the movement of two proximate BSGs become highly
correlated, the BSGs are merged. Newly created BSOs have their own BSG created for them, which will
be merged with another BSG if its movement is correlated with it.

'The old BSO will soon disappear, as CIFAR will be unable to extend it forward in time.
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Figure 14: BSO Count Performance

4.6 Summary of Algorithm Results and Conclusions

In this section, we present performance results of CIFAR's use of the algorithms. Because the difference
between the SI and RSI algorithms is relatively minor in both accuracy and performance, we will use
RSI as representative of both algorithms.

BSO counts The first evaluation looked at how well each algorithm performed in terms of assessing
BSO counts throughout each data set scenario. Accurate BSO counts is an important factor for S2
intelligence staff, as the difference between 2 tanks and 20 results in a significantly different assessment
of the battlefield. Thus, we wanted to measure how well CIFAR performed in terms of assessing
the BSOsut any given point in time. It is important to keep in mind that the "actual BSO count"

corresponds only to the BSOs that were actually reported, since we cannot expect any algorithm to
identify BSOs that were never reported. The actual BSO count is computed over a sliding 5-minute
window called a retention period. Retention windows will be discussed later (on page 24), but intuitively
they relate to how long CIFAR should consider a BSO as being known following the last time it was
reported being observed. Thus the actual BSO count is the number of uniquely GTO-labeled reports
sensed during the retention period. The assessed count for each algorithm is the number of BSOs that
were created/updated by CIFAR during that same retention period. Figures 14(a) and 14(b) provide a
comparison between the RSI, IBSE, and NIBSE algorithm counts and the BSO counts measured over
5-minute retention-period w in id forar in time every 10 seconds throughout the course of the

scenarios.
These results show that the NIBSE algorithm performs the best in both data sets. NIBSE also

performed significantly better with MARS data sets, as it is better at handling individual BSO behavior
variations than the other algorithms. RSI and IBSE both over-counted at times and both exhibited a high
fluctuation in their counts. NIBSE mirrors the progression of actual BSO counts very well. There are a
couple of especially good points during the scenarios, where the fluctuation in actual BSO count is well
matched by NIBSE. However, there are several points where even NIBSE has difficulty. There are also
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Figure 15: BSO Accuracy Performance

occasions where, for a short period of time, the NIBSE count drops briefly even though the actual counts
are increasing. It appears that this happens when the GTOs are operating too close to one another, and
CIFAR merges these reports into single BSO.

BSO accuracy The second evaluation looks at the target-type accuracy of the three algorithms (Figure
15). The actual accuracy value is computed by counting the most target-type-specific report for each
GTO from its first observation through the end of the retention period as the "target-type identity" of
that GTO. As before, we cannot expect our algorithms to intuit the specific target-type of a BSO that
has only been reported at a generic level. Again, NIBSE outshines RSI and IBSE. It is able to maintain
an identification accuracy between 85-90% in both data sets. Note that another important conclusion to
be drawn here is that NIBSE performs a successful tracking algorithm. Since the target-type attributes
vary in specificity over time, high accuracy in identifying the correct types is possible only by effective
long-term unification and tracking of the varying reported target-type specifics.

In summary, we are very pleased (and even pleasantly surprised) with the uninformed performance of
NIBSE. These evaluations used only "constant velocity" predictions and yet performed reasonably well
on data sets where BSO movements deviated from constant speed and direction. NIBSE is well suited to
using more knowledgeable predictions, such as knowledge of travel routes and terrain as well as probable
avenues of approach. We expect that the use of more informed predictions would enable more restrictive
setting of NIBSE consistency and merging parameters.

5 CIFA/UI: The CIFA Graphical User Interface

To be effective, CIFA must help analysts and decision makers work efficiently and productively within
their perceptual and cognitive limits. Experienced, human analysts and decision makers are skilled at
quickly assessing complex situations-once they are recognized-focusing on key aspects in making
decisions in the face of often incomplete and uncertain information. On the other hand, human decision


